본문 바로가기
TechStudy/TimeSeries

Recurrent Neural Networks for Multivariate Time Series With Missing Values(2016)

다변량 시계열에서 존재하는 결측치를 처리할 수 있는 모델 GRU-D에 관한 것

 

 

 

원문:

https://arxiv.org/pdf/1606.01865

 

 

 

 

 

 

리뷰 포스트:

https://datascience0321.tistory.com/49

 

[Review] Recurrent Neural Networks for Multivariate Time Series With Missing Values

Summary이번 포스팅에서는 다변량 시계열에서 존재하는 결측치를 처리할 수 있는 모델인 GRU-D에 대해 다룹니다. Irregularly Sampled Time Series본 연구는 불규칙적으로 기록된 다변량 시계열을 잘 다루기

datascience0321.tistory.com

 

 

 

 

 

2024 기준 결측치 전처리 방법론 (시공간 고려하는 방법론)

 

Biased Temporal Convolution Graph Network for Time Series Forecasting with Missing Values

 

https://iclr.cc/virtual/2024/poster/18754

 

ICLR Poster Biased Temporal Convolution Graph Network for Time Series Forecasting with Missing Values

Abstract: Multivariate time series forecasting plays an important role in various applications ranging from meteorology study, traffic management to economics planning. In the past decades, many efforts have been made toward accurate and reliable forecasti

iclr.cc

깃헙: https://github.com/chenxiaodanhit/BiTGraph

 

GitHub - chenxiaodanhit/BiTGraph: The code for Biased Temporal Convolution Graph Network for Time Series Forecasting with Missin

The code for Biased Temporal Convolution Graph Network for Time Series Forecasting with Missing Values. - GitHub - chenxiaodanhit/BiTGraph: The code for Biased Temporal Convolution Graph Network f...

github.com

 

 

728x90
반응형